
DIPARTIMENTO DI ELETTRONICA,
INFORMAZIONE E BIOINGEGNERIA

8th International Workshop on Mixed Criticality Systems
 @ Real Time Systems Symposium (RTSS 2020)

Federico Reghenzani
<federico.reghenzani@polimi.it>

Fault-Tolerant Real-Time Systems:
Challenges and Future Directions

Invited Talk

Federico Reghenzani 2

Rationale

Fault-Tolerant and Real-Time systems
 What is the current state-of-the-art of software fault-tolerant

techniques when used in real-time systems?
 How are the real-time and fault-tolerant problems linked?
 How can mixed-criticality play a role in this context?
 What are the current challenges and possible future research

directions?

With the contributions of:
 Prof. William Fornaciari, Politecnico di Milano, Italy
 Prof. Zhishan Guo, University of Central Florida, US

Federico Reghenzani 3

Real-Time Systems

Definition
 A (hard) real-time system is a system that must satisfy logical

and temporal correctness.

Task model

Worst-Case Execution Time Period Deadline

Federico Reghenzani 4

Mixed-Criticality Systems

MC Task Model

 Each criticality level corresponds to a certification requirement
➔ e.g. DAL A, DAL B, …

System mode change
 When a task overruns one of its WCET, we say that the system

“change mode”, and it usually degrades the performance of
lower criticality tasks

Criticality LevelVector of WCETs

Federico Reghenzani 5

Classification of hardware faults

 Permanent Faults
➔ They irremediably damage

the device, that must be
repaired

 Transient Faults
➔ Temporary faults, usually modeled with Single Event Upset (SEU)

 Intermittent Faults
➔ They appear as bursts of transient faults
➔ Caused by environmental effects

e.g., High-Intensity Radiated Field (HIRF)

Time

Failure rate

Infant
Mortality

Wear-Out
Failures

Random
Failures

Federico Reghenzani 6

Fault sources

Let’s focus on Transient Faults
 Main causes:

➔ High-energy Particles (α+γ)
(e.g., Cosmic Rays)

➔ Chip Package Impurities (α)

➔ Reflow Soldering Process (α+γ)

Hardware shielding is easy
for α but not for γ rays

This is very problematic
for space applications

We can improve the
manufacturing process, but
we cannot shield the system
from itself

Federico Reghenzani 7

Fault-Tolerant Systems

Hardware fault-tolerance
 The replication of hardware components is the traditional way to

achieve fault-tolerance requirements via redundancy
➔ e.g., Voting, Fail-over systems, …

 However, hardware fault-tolerance has cascade effects on
development and production costs, weight, energy consumption,
thermal dissipation, etc.
➔ Especially problematic for aerospace applications

(e.g. a LEO transfer costs 3k – 50k$/kg)

x3 processors x3 xN powerxN computers Larger electrical
generator

More weightNeed more
thrust

Need more
fuel

Federico Reghenzani 8

Software FT – Space Redundancy

N-Modular Redundancy
 Similar to hardware replication
 Each task is replicated N times (possibly on different processors) and

a voting system is applied to their outputs
 It increases by x(N-1) times the system utilization

Reconfigurable Duplication
 Hot-Standby

 Cold-Standby

τ
1

τ
1

R’
input

Test
output

output
suppressed

τ
1

τ
1
R’

input

Test
output

τ
1

τ
1

R’

input
Test τ

1

τ
1
R’

input
Test

state
update

output output

Federico Reghenzani 9

Software FT – Time Redundancy

Re-Execution
 At the end of a job, the job is restarted if an error has occurred
 The job can be restarted multiple times if the failure probability

requirement requires so

Checkpoint/Restart
 Periodic checkpoints save the state of the job, in order to resume

it in case of fault is detected
 Proper tuning of the checkpoint rate is essential

Many other techniques...
 Forwards Error Recovery, Recovery blocks….

T1 T1-reexec-1 T1-reexec-2

T2
C1 C2

T2
R

Federico Reghenzani 10

The research question

How to guarantee fault-tolerance
requirements while maintaining the

utilization at acceptable levels to guarantee
hard real-time requirements?

Federico Reghenzani 11

State-of-the-Art

Previous works
 Fault-tolerance in real-time systems is not a new topic, the first

papers appeared at the beginning of ‘90

 In the last 30 years:
➔ Many papers on fault-tolerant distributed real-time systems
➔ However, not many papers considered the transient fault

tolerance techniques in the context of “traditional” real-time
systems

 A few papers on mixed-criticality, but very preliminary works

Federico Reghenzani 12

The interest is increasing

Technology
 Transistors are getting smaller and smaller and then more

susceptible to bit flips
 The incresing use of reconfigurable architectures (FPGA) is

even more problematic

The interest in Commercial Off-The-Shelf (COTS) devices
for aerospace and automotive is increasing
 The switch to COTS is in the critical path for technology

achievements for space agencies
➔ Ref. ESA’s technology strategy 2019

 Software fault-tolerance may be the only way to satisfy the
failure requirements in COTS

Federico Reghenzani 13

Fault-tolerance and real-time crosslinks

Impact of fault-tolerant on real-time requirements
 The fault-tolerance requirement to execute more than one

time a job (re-execution), the N-MR tasks, the checkpoints, etc.
increase the system utilization

Impact of real-time requirements on fault-tolerance
 The larger the execution time, the larger a job is exposed to

transient faults in the processor and memory
 The larger the waiting time, the larger a job is exposed to

transient faults in the input memory

Fault-Tolerance Real-Time
affects

Fault-Tolerance Real-Time
affects

Federico Reghenzani 14

Possible research directions

Can Mixed-Criticality scheduling be exploited for FT?
 Example with re-execution:

➔ Fault probability in a given job (simplified): 10-4/h

 In such a setup, system mode switch depends on faults not on
the execution time → the probability of mode-switch is known

Task Criticality
Failure

Requirement
Nr. re-

execution WCET

T
1 LO 10-3/h 0 C

1

T
2 MI 10-6/h 1 {C

2
,

2C

2
}

T
3 HI 10-9/h 2 {C

3
, 2C

3
, 3C

3
}

Federico Reghenzani 15

Possible research directions

DVFS and fault-probabilities
 Changing the processor speed modifies the

amount of time a task is exposed to faults
 Increases the processor speed decreases the

exposure time, but it increases the
permanent faults rate due to thermal
effects

Composition of techniques
 Can the combination of techniques (e.g., N-

MR + re-execution) improve the
schedulability while guaranteeing the
failure requirements? T1_2

T1_1 re-exec

re-exec

Federico Reghenzani 16

Possible research directions

Sporadic tasks
 Sporadic tasks are associated to “on-demand

functions”
➔ The probability of failure requirement is

expressed as Probabilistic of Failure per
Demand and not Probability of Failure per
Hour:
e.g., PFD = 10-3 / job

 Does this change the way failure and real-
time requirements interact?

OS & Scheduler
 How to make OS (including scheduler)

resilient to faults?
➔ Can we apply the same techniques (N-MR, re-

execution, …) for OS tasks?

Who guards
the guards?

Federico Reghenzani 17

Possible research directions

Probabilistic (worst-case) execution time
 pWCET or pET may provide a statistical

characterization of the fault probability less
pessimistic compared to the WCET

What about malicious faults and security?
 Can attacks invalidate real-time

requirements?
➔ e.g., can a DoS attack make the utilization > 1?
➔ What about side-channel attacks exploiting

timing information?
 How security countermeasures impact real-

time requirements?

Federico Reghenzani 18

Conclusions

Thanks for your attention
Questions & Discussion

http://heaplab.deib.polimi.it/wmc2020/

http://heaplab.deib.polimi.it/wmc2020/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

