

Justifying the Service Provided to Low-Criticality Tasks in an Avionic Mixed-Criticality Multi-Core System

> Iain Bate Dept of Computer Science University of York iain.bate@york.ac.uk

Overview of the Seminar

- My interest in Mixed-Criticality Scheduling (MCS)
- Some real world requirements for MCS
 - Existing work on deploying MCS
 - The challenge of guaranteeing service for lower-criticality services
 - Limitations of observations
 - Based on S. Law, I. Bate, B. Lesage, Justifying the Service Provided to Low Criticality Tasks in a Mixed Criticality System, RTNS, 2020
- Additional challenges from multi-core
- Planned work in the near future
- Open research questions

My Interest in MCS

It brings together a number of areas of work

- Multi-objective optimisation
- Search-based testing
- Safety arguments
- Evidence based on static and dynamic analysis backed up by statistics
- Real world applicability
- Research challenges inspired by the real world

- WCET processes are pessimistic, but we would struggle to prove this to a certification authority
 - Can we better use this 'spare' utilisation?
- Mixed Criticality Scheduling allows low criticality tasks to execute on the same target hardware as high criticality tasks
 - Allowing low criticality tasks to have deadlines, periods and timing requirements
 - Giving a good balance between safety, flexibility and maximising utilisation

- Low DAL tasks are developed / tested to the same standard as a high-DAL task!!
- Saving is gathering less evidence of integrity
 - Remember writing code is relatively cheap
 - The code may even be autocoded
 - Partitioning must be employed as certification is often based on segregation and isolation
- It is very important we address exactly what we mean by a 'low-DAL' task
 - What tasks/operations are appropriate/safe as 'low-DAL' tasks?

- Additionally we have a number of tasks we would consider to be high criticality
- We can afford for them to be disabled for short periods of time
 - For instance recording error logs in non-volatile memory, a time consuming but still important process
- Principal benefits Cost & Flexibility

- In particular we studied the application of a monitoring task responsible for writing to Non-Volatile Memory
 - Robust and low-DAL
 - Responsible for writing data from a queue to NVM
 - Able to drop some jobs, then need to run normally to catch up
 - Can we be confident its write queue will not overflow?

- AFDX (time-triggered aircraft comms) is a similar example
- Aspects of AFDX have tight timing requirements as comms schedule is slot based
 - Transactional-style requirements
 - Reading and writing to the device have very tight deadlines
 - Gathering data and putting it into packets takes more time
 - Short periods of not putting data into packets could be okay
- A buffer overflow could have consequences
 - The system should be designed accordingly though
 - A key part of safety is understand components failure modes

Two models have been considered

- AMC+
- Robust scheduling
- A. Burns, R. I. Davis, S. Baruah, I. Bate, Robust Mixed-Criticality Systems, IEEE Transactions on Computers, Vol. 67, No. 10, pp. 1478-1491, 2018.

Robust scheduling intended to give

- Greater control over what happens when a task exceeds C_{Lo}
- To improve degradation of services

In robust scheduling

- Normal mode
 - F hi-criticality tasks can exceed C_{LO}
- The system then moves into *resilient* mode
 - Up to M tasks can exceed $C_{\mbox{\scriptsize LO}}$
 - Each robust task can skip up to S jobs
- Then, the system enters *high-criticality* mode
 - Low-criticality tasks are not released
- On an idle tick the counters for jobs skipped (JF) are reset
- If C_{Hi} is exceeded, then there is a power cycle

• Current static schedulability analysis confirms

- High-criticality tasks always meet their deadlines
- Low-criticality tasks meet their deadlines when jobs are released and completed
- If jobs are allowed to be skipped, then the number is bounded

- We looked at the deployment of both AMC+ and robust scheduling to give
 - Equivalent partitioning and segregation to current operational systems
 - Quantified the overheads and included in schedulability analysis
 - Clustering tasks to reduce the overheads
 - AMC+ assessment is covered in S. Law, I. Bate, B.
 Lesage, Industrial Application of a Partitioning Scheduler to Support Mixed Criticality Systems, EUROMICRO Conference on Real-Time Systems, 2019.
 - Robust scheduling in Steve Law's thesis

- Many academic papers have looked at improving low DAL service
- None (to our knowledge) have identified ways to quantify it
- We want to know
 - What is the minimum gap between entering high-criticality mode?
 - The max jobs skip allow us to guarantee from a normal level the buffers don't overflow
 - The minimum gap then allows us to guarantee the buffers return to their *normal* level

Assessing Low Criticality Service

 A GSN supported statistical approach built around a scheduler simulator, seeded with real data, and updated throughout the software development process

Confidence

- Hard to get enough data off a real fully-integrated system
- Established a three-part simulator
 - Used the actual high-level set of tasks and associated attributes (e.g. period, deadlines and priorities)
 - Used low-level timings based on extensive search-based execution times
 - S. Law, I. Bate, Achieving Appropriate Test Coverage for Reliable Measurement-Based Timing Analysis, EUROMICRO Conference on Real-Time Systems, 2016
 - Realistic overhead model based on actual RTOS and timings

• 40% low DAL utilisation added into the system

AMC+ assessed first

- How can we have confidence that the simulator has observed a large enough sample of the search space?
- How can we have confidence that continued testing will not reveal new results?
- Clearly average and minimum give limited confidence

Confidence

Blue line is the average

Red line is the minin

Confidence

• Convergence was assessed

- Take X% of the simulation results and compare to the rest
- Use confidence intervals
 - How confident are we that the minimum gap is greater than Y%?

and chi-squared test

- Does the first X% come from the same distribution as the rest?

and Earth Movers Distance

- How different are the distributions?

Substantial evidence from whole system testing

- Null hypothesis is not refuted
- The system will not exceed the required minimum inter-skip rate

Confidence

- Our work looked at whether the distribution was changing as #simulations increased
 - I Bate, D Griffin, B Lesage,
 Establishing Confidence and
 Understanding Uncertainty in Real Time Systems, RTNS, 2020.
- Distributions of execution times gave some confidence
- Distribution of significant factors added to this, e.g.
 - Path length, loop counts, #iPoints

Likelihood

- How often do we come close to seeing an error?
- If an error has been observed, what is the frequency of occurrence?
- If an error has *not* been observed, use a fitted distribution to assess exceedance probability
 - Noting the usual health warnings here

Time Between Skips	% Results More Frequent Than Time Between Skips
50ms	99.9948%
$60 \mathrm{ms}$	99.9947%
$70 \mathrm{ms}$	99.76%
$80 \mathrm{ms}$	98.73%
90ms	96.76%
$100 \mathrm{ms}$	75.43%

Correctness

How can we be sure the simulation is correct?

 Simulation offers a route to fast, iterative, repeatable testing... provided the simulation is correct

Mostly by construction

- The data underpinning it is right
- My PhD student claims he is a good software developer $\ensuremath{\textcircled{\sc o}}$

- Are the results acceptable?
- 40% additional utilisation could be added to the process
- Task could be expected to complete its operation, without error, in 99.995% of cases
 - But... that's potentially 360 low DAL timing errors per hour...
 - If less than 40% utilisation was added, then it is likely there would be a substantial reduction in timing errors

Acceptability

Is this good enough...?

- Depends on the task's system requirements
- If not, the system can be refined, with the simulation easily repeated
- Hopefully issues understood early point in the design lifecycle

Acceptability

- With robust scheduling, there were no timing errors even with the 40% utilisation load
- Robust requirements for NVM were
 - The task is capable of writing data to flash memory at a faster rate than the reporting tasks can write data to the shared memory buffer
 - The buffer means up to four jobs can be skipped S=4
 - After a job skip burst, the task must execute the following four jobs for at least C_{LO} to ensure no data is lost

Limitations of the Work

- Skewedness or incompleteness of the timing data
- Work was based on a simple but real platform
- Argument and evidence falls short of a proof
- Argument and evidence may be sufficient
 - As Low As Reasonably Practicable (ALARP) is accepted
 - The amount of integration testing that should be performed
 - Critical systems should have fault tolerance based around expected failure modes

Additional Challenges from Multicore

- Confidence in execution time will be diminished with greater variability
- Simulation will be more complex as tasks are not independent
- Simulation time needed for equivalent confidence vastly increased
 - General increase in the number of operational scenarios
 - i.e. permutations of task sets executions
- Small changes may have a bigger wider effect

Planned Work

- Hi-Class is a large project with most of UK civil avionics
- Key driver is multi-core for avionics
 - Low numbers of predictable cores
 - Bare metal
 - 653 and non-653 based RTOSs

UoY providing advice on

- What information is needed from multi-core timing analysis
- Testing strategy to gain this information
- Architectural options for multi-core

Planned Work

- UoY is mainly investigating task allocation and scheduling of multi-core systems
- Based on algorithm to generate realistic task sets
- Plans to create a simulator for multi-core tasks with the following interference characteristics
 - No Dependency
 - Additive
 - Super Additive
 - Hidden
- Nuanced extended robust scheduling policy to deliver more controlled graceful degradation

Planned Work

- MOCHA is a Huawei funded project
- Much more complex software and platforms
- Scheduling policies for DAGs
- Digital Twin to support Design Space Exploration (DSE)

DSE includes

- Designing memory architectures
- Allocating tasks to cores
- Controlling back pressure
- Reducing RTOS overheads

Acknowledgements

- Members of the RTS group
- Rolls-Royce for years of support, inspiration and access to real systems
- Innovate UK for funding the Hi-Class project
- Innovate UK for funding the ATICS project
- Huawei for funding the MOCHA project
- Members of WashU for stimulating discussions and space to think

Justifying the Service Provided to Low-Criticality Tasks in an Avionic Mixed-Criticality Multi-Core System?

Iain Bate Dept of Computer Science University of York iain.bate@york.ac.uk

Overview of the Talk

- Lower criticality tasks could be added to the system
 - Lower criticality doesn't mean soft real-time
 - Tasks would be implemented to the same level
- Timing data is available for tasks based on search-based WCET analysis
- Timing properties of tasks and RTOS well understood
- Bounded loss of service is okay for some tasks

Overview of the Talk

- Simulator developed to allow loss of service to be understood
- Results demonstrate how the impact of more functionality being added to the system
- Results partly empirical which challenges conventional industrial and RTS thinking
- Route to certification identified
- Multi-core is going to make the challenges harder
- Multi-core is going to increase the need to understand the loss of service

Open Research Questions

As we move away from jobs always being completed periodically and completing within their deadlines

- What are the real timing requirements?
- How to write functions differently for robust tasks?
- How do we form representative timing profiles of tasks?
- Where do C_{Lo} and C_{Hi} come from?

Open Research Questions

- How can the management of time be integrated within Model-Based Engineering?
 - E.g. embed loss of service into Simulink models
- How do we know when we have enough data about a system?
- How to understand the potential impact of uncertainties?
- How to create a CAST-32A argument for multicore mixed-criticality scheduling?

Open Research Questions

Digital Twins (DT) is a well-established practice but what are the challenges around timing

- Acceptability What information can we realistically be expected to extract from a real system?
- Accuracy What does it mean for a simulator to be accurate?
 - Very much depends on the questions to be answered with DT
- Efficiency What is the right level of abstraction for the model and the right type of feedback?

Many of the research questions are socio-technica